On the impossibility to forge illegitimate proofs of membership
in Merkle (Patricia) Trees

Jérémie Albert
jeremie@inblocks.io
inBlocks

Bordeaux, France
ABSTRACT

The value of an asset often depends on the capability we have to
demonstrate its existence at a certain date. Blockchains provide such
a service but they tend to be expensive if used intensively. Multilevel
ledgers exist that make is possible to cache the operations and thus
to reduce the cost of use but not many (if any) have provided proofs
that they do not put at risk the assets they register. Therefore
the goal of this paper is to demonstrate in an understandable and
convincing manner that the so called Precedence multilevel ledger
that we have developed at inBlocks does not impair the assets
entrusted to it.

1 INTRODUCTION

Assets, in a business perspective, are a promise to a future bene-
fit. They might be photographs, movies, sounds, text documents
or structured key/value representations (e.g. XML or JSON files).
Whatever their format all these information can be considered as
binary data and in the following we do not assume any specific
format regarding these digital assets; we definitely consider them
as binary data and we might refer to them simply as data.

The value of an asset and thus of the digital asset recording pro-
cess depends on the capability we have to demonstrate its existence
at a certain date.

The data required to demonstrate such existence is called a proof of
existence. The keystone value of a proof of existence is its creation
timestamping and the capacity of our platform to demonstrate, in a
undeniable way, the truthfulness of this timestamp (i.e. that it has
not and that it cannot be forged). To demonstrate the existence of a
piece of data at a certain point in time we usually assume that the
recording of its fingerprint (a series of bits that is unique for any
numeric item) as a digital asset in a secure and distributed ledger
like Bitcoin or Ethereum[9], is perfectly safe, meaning it cannot be

forged.

inBlocks[3] is a blockchain[4, 8] startup company founded
in 2018 that created a SaaS platform designed to record and
manage digital assets. We have developed additional layers
for the purpose of making the use of a blockchain less ex-
pensive and more flexible for our users, and this is our value.
Indeed, for real use case scenarios, the cost (in terms of euros or
dollars) of this recording is very high. Our goal at inBlocks is to
make this process affordable, even for assets whose value might
be very low. The solution we provide is a way for our users to
minimize their costs by aggregating a number of operations by

Serge Chaumette

serge.chaumette@labri.fr

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800

Talence, France

using an open-source solution developed at inBlocks called
Precedence.

Precedence is an open-source software solution to certify
and prevent forging numerical assets. It is integrated within
our platform to allow our customers to create data repositories
structured as a blockchain. It has the same intrinsic characteristics,
like the impossibility to remove a record from an already existing
block without having to recompute all the blocks that refer to it (i.e.
all the blocks that were created afterwards). The data structure that
is used in Precedence is a a Merkle Patricia Tree (MPT for short in
what follows). A MPT is a tree data structure designed to reduce
the size of the proof of existence of every piece of data that it stores.

The goal of this paper is to demonstrate that the Precedence in-
Blocks software layers do not impact the security of the overall
system. i.e. that the security is the same when using inBlocks plat-
form and when directly using a blockchain. This demonstration
must inspire confidence: this is the goal of the work presented in
this paper to lay understandable and solid foundations to support
this confidence.

To achieve this goal we proceed as follows:

(1) we give clean definitions of the different forms of trees that
are used (Trees, Prefix Trees or Tries, Merkle Trees and
Merkle Patricia Trees),

(2) we then show that no proof of membership of a digital asset
secured using such structures can be forged.

By doing so, we hope to advance the way confidence can be ex-
plained, described and proven simply so as to be convincing for the
users of our platform and of similar registries.

2 TREES, PREFIX TREES AND PATRICIA
TREES

2.1 Definitions

A Tree is the combination of a value (the value of its root) and of a
number of children (Trees).

DEFINITION 2.1 (TREE).

Let V be a set of values.

Ifvalue € V then T = (root_value = value, children = 0) is a Tree
overV.

Ifvalue € V,t1,t, ...ty are Trees over V then T = (root_value =
value, children = {t1,t2,...,tn}) is a Tree over V.

It should be noted that we do not define the notion of node as
can be found in the literature. The reason for that is that we are
interested in values that are stored and the notion of node is thus not
necessary in what follows. Our approach is value oriented rather
than structure oriented, which we believe is an original point of
view.

The Children of a Tree are defined by construction as follows:

DEFINITION 2.2 (CHILDREN).

Let T be a Tree.

Children(T = (root_value, children)) = children is the set of Chil-
dren of T. We will also write T .children.

DEFINITION 2.3 (LEAF).
A Tree with no child (children = 0) is called a Leaf.

DEFINITION 2.4 (INTERNAL TREE).
An internal tree is a tree that is not a leaf.

The Root of a Tree is defined by construction as follows:

DEFINITION 2.5 (ROOT OF A TREE).
Let T = (root_value, children) a tree.
root(T) = root_value is the root of T. We will also write T.root_value.

DEFINITION 2.6 (SUB TREE).
Let T be a Tree.
S isa Sub Tree of T iff S=T orS is a Sub Tree of a child of T.

DEFINITION 2.7 (FATHER).

Let T be a Tree and S one of its Sub Trees.

The Father of S in T is the Tree F, if it exists, such that S is a SubTree
of T and S € Children(F), O otherwise.

Notation: we will write Father(S € T) to denote the Father of S in
T and Father(S) when there is no ambiguity on T.

2.2 Operations on a Tree

The Brothers of a Tree are the Children of its Father minus itself.

DEFINITION 2.8 (BROTHERS).

Let T be a Tree.

IfFather(T)=0 then Brothers(T)=0 else Brothers(T)=Children(Father(T))-
T

The Uncles of a Tree are the Brothers of its Father.

DEFINITION 2.9 (UNCLES).
Let T be a Tree.
If Father(T)=0 then Uncles(T)=0 else Uncles(T)=Brothers(Father(T)).

The i-Uncles of a Tree are its Uncles at the ith level.

DEFINITION 2.10 (1-UNCLES).

Let T be a Tree.

i-Uncles(T,1)=Uncles(T).

Fori > 1, i-Uncles(T,i)=Uncles(Father(T),i-1) if Father(T)# 0, O other-
wise.

The *i-Uncles of a Tree are its Uncles and the Uncles of its ancestors
in the Tree up to the it" level.

Jérémie Albert and Serge Chaumette

DEFINITION 2.11 (% I-UNCLES).

Let T be a Tree.

xi —Uncles(T, 1) = Uncles(T)

For i > 1 x i-Uncles(T,i)=Uncles(T)J % i-Uncles(Father(T),i-1) if
Father(T)# 0, O otherwise.

2.3 Prefix Trees and Patricia Trees

Prefix Trees (or Trie for reTRIEval of data) and Patricia Trees[6] are
optimized trees in terms of the organization of the data they store.
They support the efficient insertion and retrieval of these data.

A Prefix Tree (or Trie) is typically used to store strings, each node
carrying only one letter. Strings that share a common prefix have
the same ancestor in the Trie.

A Patricia Tree is an optimisation of a Trie. It is a Prefix Tree where
each leaf that has no brother is iteratively merged with its father
(and thus contains a string instead of a single character). It provides
a way to access information in a space and time efficient manner
(better than what can be achieved with a Trie) as described in the
reference paper. Patricia stands for Practical Algorithm To Retrieve
Information Coded In Alphanumeric.

3 MERKLE TREES ANS MERKLE PATRICIA
TREES

3.1 Merkle Tree

A Merkle Tree (MT for short) is a tree built as follows: the value
of a leaf is a hash; the value of an internal node (all nodes but the
leaves) is the hash of the concatenation of the values of its children.
It should thus be noted that the order of the children of a node in a
merkle tree matters.

The use of a hash function (more precisely of a one-way
and collision-resistant hash function) is the key to the cryp-
tographic features supported by Merkle Trees and Merkle
Patricia Trees. By hypothesis, generating the same image
from different pieces of data (a collision), is too costly and as
such considered impossible. This hypothesis is the keystones
of many if not all security systems and this is also the case
for the proofs that will follow in this paper.

Rationale for defining Merkle Trees in the context of the
blockchain

To check the presence of a value in a MT, it is enough to provide
the root of the tree, the values of its brothers, of its uncles, and
of the uncles of all its ancestors in direct line. It thus makes it a
significant help to assert the existence of a given data asset at a
given timestamp. This property will be detailed later in this paper.

3.1.1 Definitions. Let # be a one-way hash function defined over
a set of values (digital assets) V. Let H = #(V) be the set of hash
values of the members of V.

DEFINITION 3.1 (MERKLE TREE).

Ifh € H then MT = (root = h,0) is a Merkle Tree over H.

If {mt1, mty, .., mtn} is an ordered set of Merkle Trees over H then
T = (root = #(Root(mty).Root(mtz).....Root(mty)), children =

On the impossibility to forge illegitimate proofs of membership in Merkle (Patricia) Trees

{mt1, mty, ..., mtp}) is a Merkle Tree over H and root is the root of
this tree.

It should be noted that the leafs of the tree are the only nodes
that carry a value (more precisely a hash) of V (more precisely of
H=#(V)).

The following property results from the construction of a Merkle
Tree.

PROPERTY 3.1. A Merkle Tree is a Tree.

All the definitions and operations defined for trees (above) thus
also apply to Merkle Trees.

3.1.2 Operations on a Merkle Tree. We introduce the notion of a
Future Merkle Tree (FMT for short) that will be useful to describe
attack attempts that consist of replacing part(s) of the MT with fake
data. A FMT is a tree with a hole, i.e. a tree where a sub tree has
been removed, leaving a hole in the structure. This hole can be later
populated with a replacement tree/sub tree.

Rationale for defining FMT in the context of the blockchain
Replacing a subtree of a MT is the way an attacker would forge
false proofs of membership in the blockchain. We will thus use this
notion of FMT to prove the impossibility of this attack. This will be
detailed later in this paper.

DEFINITION 3.2 (FUTURE MERKLE TREE).
A Future Merkle Tree is a Merkle Tree with a hole. It is noted FMT|].

DEFINITION 3.3 (POPULATED FUTURE MERKLE TREE).
A Populated Future Merkle Tree is a Future Merkle Tree FMT the hole
of which has been filled with a Merkle Tree MT. It is noted FMT [MT].

Note that populating a Future Merkle Tree should be done with
a Merkle Tree and also implies a recompilation of part of the tree
(because the hash values carried by the node above the populated
hole depend on the tree used to populate he hole). If not, the result
is a Tree but not a Merkle Tree.

DEFINITION 3.4 (SUBTREE SUBSTITUTION).

Let mt and mt’ be Merkle Trees, mt # mt’.

Let MT = FMT[mt] be a Merkle Tree.

MT{mt — mt’} = FMT[mt’] is the substitution of mt by mt’.

MT{t — t’} is the same tree as MT except mt has been replaced
by mt’ and consequently part of the tree has been recomputed.

3.1.3 Properties of a Merkle Tree.

The following property establishes that is is not possible to change
a subtree of a Merkle Tree without modifying its root.

PROPERTY 3.2 (ONE SUB TREE SUBSTITUTION INSTABILITY).
Let mt, mt’ be two distinct Merkle Trees.

Let MT = FMT [mt] be a Merkle Tree.

Then root(FMT[mt’]) # root(MT)

Proor. The proof is built by induction on the depth d of the tree.

e ford=1
Let MT be a Merkle Tree of depth 1.
MT = (root,0) = [(root, 0)]

Let MT’ be another Merkle Tree, and assume that Root (MT’) =

root. Then there are two possibilities:

(1) either MT’ = (root, 0) which is not possible because
we said the replacement Tree should be different from
the original Tree

(2) or MT’ == (root, mty, ..., mty) with root = #(#_ mt;).
being a hash function, this means that we are in pres-
ence of a collision of the hash function. By hypothesis
(see section 3.1), generating such a collision, i.e.
computing such a set of children is too costly and
considered impossible. Consequently, even if this
is theoretically possible, this is practically impos-
sible, which is enough from a practical point of
view.

o ford>1
Let MT = FMT [mt] be a Merkle Tree of depth d, d > 1
By induction hypothesis we have
Vmt’' # mt, Root(FMT[mt’]) # root(MT)

e ford+1

Let MT = (#(mty.root, ..., mty.root), mty,...mt,) and let
mt; be the tree where the substitution is done (it can be
mt; that is substituted or one of its subtrees). This substi-
tution thus takes place at depth < d and produces a new
tree mt]. Since depth of mt; = d — 1, we have by induc-
tion hypothesis Root (mt]) # Root(mt;) and it results that
#(mty.root, ..., mtlf.root, .oy MEp.roO0t) #

#(mty.root, ..., mti, ..., mty.root)

We now show that making several substitutions is equivalent to
making only one.

DEFINITION 3.5 (MULTI FUTURE MERKLE TREE). A Multi Future
Merkle Tree is a MT with n holes. It can be written as follow

MT = FMT,([11[]2-.-[1n)- The indexes of the holes will not be indi-
cated when there is no ambiguity.

PROPERTY 3.3 (N SUB TREES SUBSTITUTION INSTABILITY). Let MT =
FMT, ([mt1][mt2]...[mt,]) be a Merkle Tree.

Let mt{, mté, ... mty, be a set of Merkle Tres with mt; # mt;..

Then root(FMTy, ([mt]][mt}]...[mt},]) # root(MT)

Proor. The proof is straightforward.

e for n =1 we have shown the property earlier in this paper
(property 3.2).

o forn> 1.
Let A be the smallest common ancestor of mty, mts, ..., and
mty. We thus have MT = FMT, ([mt1][mtz]...[mt,]) =
FMT’ ([A])
In the substitution process A is thus replaced by A, A” # A.
Since the property holds for n = 1, we have FMT’ ([A]) #
FMT'([A’])

3.2 Merkle Patricia Tree

3.2.1 Overview. A Merkle Patricia Tree (MPT for short) is a Tree
that stores (path, value) pairs, and given a path it is possible to
retrieve the associated value (as in a Patricia Tree). It is combined
with a data base that contains pairs (key_array, value) each entry
being itself referred to by a key, and key_array containing the key
to access each of the children of the current node.

When looking for a node, you use the root key (that must thus
be provided in some way) to access the associated entry in the
data base and recursively use the key_array index to go down the
tree. In other words "you start by looking up the root hash in a flat
key/value DB to find the root node of the trie. It is represented as
an array of keys pointing to other nodes. You would use the value
at index" [appropriate index] "as a key and look it up in the flat
key/value DB to get the node one level down." [2].

A Merkle Patricia Trie thus "provides a cryptographically authen-
ticated data structure that can be used to store all (key, value) bind-
ings."[2]. It makes it possible to check the existence of a (path, value)
pair in a given MPT, giving away less information than what is
required in a MT.

To summarize, a MPT can be seen as a combination of a Merkle Tree
with a Patricia Tree. The Patricia structure is used to define/locate
the storage location of a piece of data in the tree and to accelerate
the retrieval process, and the Merkle construction is used to ensure
the cryptographic features (using a hash combination process) as
in a Merkle tree.

Rationale for defining Merkle Patricia Trees in the context
of the blockchain

To check the presence of a value in a MPT, it is enough to provide
the root of the tree, the pair (path, value) given at insertion time
and what is referred to as a proof which is the series of hashes
leading from the leaf to the root of the Tree. It thus makes it, like
MPT, a significant tool to assert the existence of a given pair (path,
data asset) at a given timestamp, providing much less information
than by using a simple MT. This property will be detailed later in
this paper.

3.2.2 Definitions. Let V be a set of values (digital assets) and P be
a set of paths defined over an alphabet AZ, of size |AZ| = r (we call
nibble a small part of a path, and a nibble is itself a path). Let # be
a one-way hash function over V. Let H = #(V) be the set of hash
values of the members of V.

DEFINITION 3.6 (R-MERKLE PATRICIA TREE).

CUT is a r-Merkle Patricia Tree, and CUTkey=0.

Ifpath € Pandvalue € V,thenT = (node = (nibble = path,value =
value, children = 0), key = #node) is a r-Merkle Patricia Tree over
(P, V).

Ifpath € P,v € V and {mpty, mpty, ..., mpt, } is an ordered set of
r-Merkle Patricia Trees over (P,V) then T = (node = (nibble =
path,value = v,children = {mpt;.key, mpty.key, ..., mpt,.key}),
key = #node) is a r-Merkle Patricia Tree over (P,V)

The above definition makes it clear why these trees are called
Merkle Patricia Trees: like for Merkle Trees, the root is a fingerprint
of the entire data structure[1].

Jérémie Albert and Serge Chaumette

We now define the path and the proof of a MPT.

DEFINITION 3.7 (PATH).
Let T be a MPT.
if Father(T)=0 path(T) = €
else path(T) = path(Father(T)).(T.path).

The path is either provided at insertion time or built at insertion
time based on a serialisation of T.value. If a path p is provided at
insertion time, the insertion process should be so that path(T) = p.

DEFINITION 3.8 (PROOF).
Let T be a MPT.
if Father(T)=0 proof(T) = €
else proof (T) = proof (Father(T).(T .key).

The proof is constructed and returned at insertion time or can be
obtained by providing the path of a node.

4 PROOF OF MEMBERSHIP

As explained earlier in this paper, a proof of membership of a data
asset is itself a piece of data (globally called a proof) than can be
used to prove that this data asset has been recorded in a ledger at a
give time (at a given time stamp).

The question is then: is it possible to forge a proof that would
pass the verification process to claim that a piece of data has
been inserted in a ledger at a given timestamp?

4.1 Proof of membership in a Merkle Tree
In a Merkle Tree (MT) a proof of membership is composed of :

o the digital asset (indeed a hash of a digital asset) stored in
a leaf of the tree

o the Brothers of this leaf

e the Uncles of this leaf and of all its ancestors (in direct line)

e the root of the tree

If we use the notations and definitions that we have given in this
paper, these are:

the value of a Leaf L=(value=#(digital asset), 0)
Brothers(Leaf)

*-Uncles(Leaf)

Root(Tree)

The algorithm used to check the validity of the proof of membership
can the be expressed as follows :

Bool verify(Node_Value, Node_Brothers,
Node_*-Uncles, Tree_Root) {
if ((Node_Brothers==0) and (Node_x-Uncles==0))
then /* we have reached the Root of the Tree)

if (Node_value == Tree_Root.value) then
return True

else
return False

/* Compute what should be the value
of the Father of the current Node */
expectedFatherValue =#(Node_value..BENode_Brothersg 4q11,¢)

20

21

22

23

On the impossibility to forge illegitimate proofs of membership in Merkle (Patricia) Trees

/* Retrieve brothers of father =/
Father_Brothers= [...] /% from Node_x-Uncles =*/
/* Retrieve uncles of father and of its
direct ancestors */
Father_*Uncles= Node_%*-Uncles - Father_Brothers
/* Verify that the expected Father Value is part
of the Merkle Tree at hand x/
return verify(expectedFatherValue, Father_Brother
Father_x-Uncles, Tree_Root)

In the above algorithm the values of all the nodes of the Tree on
the path from the leaf to verify, up to the root of the Tree, are
reconstructed. The only way to fool this verification process would
be to do so that the root that is eventually reconstructed in this
process starting from a substituted sub-tree equals the initial root
of the tree at hand. We have shown (properties 3.2 and 3.3) that
this is not possible.

4.2 Proof of membership in a Merkle Patricia
Tree

In a Merkle Patricia Tree (MPT) a proof of membership is composed
of:

e a pair itself composed of:

- the path (definition3.7) given at insertion time or ob-
tained from the insertion process. Paths are sometimes
referred to as keys (for insertion keys), but we find it
confusing with respect to the hashes that are used as
access keys

— the value associated with the path

o the proof (definition 3.8) associated with the (path, value)
pair
To describe the proof verification algorithm we require an additional
function to navigate between hashes and the nodes ot the MPT.
We thus define the function child such that

DEFINITION 4.1. child(hash, child_hash) returns the node, the hash
of which is child_hash.

In effective implementations, this function is implemented by means
of a database associated with the tree.

The algorithm used to check the validity of the proof of membership
can now be expressed as follows (a version taking into account the
Ethereum optimization of a MPT can be found in [7]):

Bool verify(root_hash, target_proof,
target_path, path_idx,
target_node_value) {

proof_idx,

current_node=child(root_hash, target_proof[0])
nibble_length=len(current_node.nible)
if (path_idx==0)

then
/* checking root */

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

if (target_proof[@]!=root_hash)

then

return False
else
/* for all nodes but root check that
the series of # remains valid x/

if (target_proof[proof_idx]!=root_hash))
then

return False

if (path_idx + nibble_len < length(target_path))
/* we are at the level of an internal node =*/
if (current_node.nibble==
target_path[path_idx:path_idx+nibble_len])
then
/* path corresponds x/
new_expected_root=Node_proof[proof_idx]
return verify(
new_expected_root,
target_proof, proof_idx + 1,
target_path, path_idx + nibble_len,
target_node_value)

/* we are at the level of a leaf */

/* check if both nibble and value match =*/

if ((current_node.nibble==
target_path[path_idx:path_idx+nibble_len])
and
(current_node.value=target_node_value))
then

return True

/* none of the tests has been successful =/
return False

We have shown that forging a proof for a given value that passes
the verification process is not feasible for MT (see section 4.1). The
verification process being almost the same for MPT, it is also not
feasible: instead of starting the verification from a leaf of the tree,
the verification starts at the root. Still, the reasoning is the same.
The root hash can only be the valid root of a given path provided
the components of the path are those that have been used to build
the root. Fooling the proof verification process is thus impossible.

Since the proof associated to a given value cannot be forged, de-
scending the tree also makes it possible to verify the path associated
to the target value. The path and the proof should describe the same
navigation in the tree when descending it.

By doing so it is thus possible to verify the existence of (path, value)
in the considered tree.

5 PRECEDENCE: A PROOF OF SAFETY

Our proof addresses a theoretical model of the architecture (at the
level of its design) rather than its effective implementation that
would require effective code analysis, which is currently out of the
scope of our work.

5.1 Architecture of Precedence

Precedence is a software written in both Node]S (this version of
Precedence is available on GitHub!) and Java (not yet released). It
relies on the implementation of the Merkle Particia Trie that is used
in Ethereum? and that is available on GitHub?. Most blockchain
technologies are inefficient in terms of number of transactions
(i.e. number of writes) per second. For example Bitcoin supports in
average a maximum of 7 writes per second[5] and Ethereum around
15[5]. The main purpose of the Precedence stack is to provide a
data storage mechanism that scales in term of number of possible
writes per second without tampering with the security of data. The
way we make it scale is by adding a multi-level mechanism so that
we can create a sort of forest of Precedence instances that act as
independent data layers. Each layer (except the top level one that
we call Layer 1) periodically writes information in the upper level
layer. In our architecture we assume that Level 1 is a distributed
blockchain like Bitcoin or Ethereum. All the other layers (from 2
to n) might not be public, and this privacy must not lead to a lack
of confidence regarding the proof-of-existence that this software
stack generates. The aim of this paper is to show that whatever the
number of layers we use, the proof-of-existence of a piece of data
stored in a layer n that is run by the Predecence stack is as secured
(i.e. cannot be tampered with) as a proof-of-existence of a piece of
data that would be stored directly into a Layer 1 ledger.

5.2 Specific implementation information

Every piece of data sent to Precedence contains both a key and a
value. The key is the document identifier that is guaranteed unique
inside the system (at this Layer) and the value is a blob (any binary
data). This information is encapsulated in a JSON document.

We now give some definitions that will help explain the Precedence
internal data structure:

o seed (that could have been named salt but as we use it to
obfuscate in the same way all the values of a document
we could argue that it is both a seed and a salt as defined
most of the time in the literature) is a random and server-
side computed number represented as a UUID (that is not
time-dependent and assumed randomly generated like the
UUIDv4)

e hash(d) is the value resulting from the hash computation
of the data d. We assume that all the hash function used
are cryptographic (and so one way) hash functions.

o obfuscated(d,seed) = hash(concat(hash(d), seed)) is a func-
tion used to obfuscate any piece of information (d in this
example)

Each Precedence record is built from a provable document named D
in the following, that contains at least 3 key/value items defined as
follows (we assume here the asset identifier is id and its associated
data are d):

e provable.id = id = hash(key), where key is the asset id

!https://github.com/inblocks/precedence
Zhttps://ethereum.org/
3https://github.com/ethereumjs/merkle-patricia-tree

Jérémie Albert and Serge Chaumette

o provable.seed = obfuscated(seed, seed)
o provable.hash = obfuscated(d, seed)

In the Merkle Patricia Trie used in Precedence, the key (or path)
we use is provable.id (= id) and the value is hash(D).

5.3 Proof of safety

Following the Merkle Patricia Trie structure, we can demonstrate
easily that a document (key, value) is part of it and so part of the
Precedence data layer, whatever its level.

Each time a block is generated in a Precedence Layer n (n > 1), its
root hash is written as a new document in a Precedence Layer n — 1.
We can then demonstrate the existence of the block of the Layer "
in the Precedence of the Layer n — 1. The above construction builds
a forest of Precedence instances, that is by construction structured
as a Merkle Patricia Tree. Based on the work presented in this paper
we can then recursively demonstrate that the existence of any given
piece of information written using Precedence can be asserted in
the Layer 1 ledger (for now we use Ethereum and a dedicated Smart
Contract to store those values).

6 CONCLUSION

In this paper we have shown that the multilevel Merkle Patricia
Trees used in Precedence are simple data structures which allow
building proof-of-existence that cannot be tampered with (as long
as the one-way cryptographic function it relies on can neither be
tampered with).

The open-source Precedence stack was not designed to be dis-
tributed among a set of participating nodes. However, we are cur-
rently working on new data distribution features that could bring
a peer-to-peer autonomous confidence (to make the system inde-
pendent from a distributed Level 1 ledger) still preserving a by-
design data privacy capability. We are convinced that this proof-of-
existence feature can be achieved in a distributed way without any
global (and often costly) consensus mechanism which is required
in blockchain solely to prevent the double-spending issue.

REFERENCES

[1] 2016. How does a Merkle-Patricia-trie tree work?
https://ethereum.stackexchange.com/questions/6415/eli5-how-does-a-merkle-
patricia-trie-tree-work. Accessed: 2023-10-20.

[2] Ethereum contributors. 2023. Merkle Patricia Tree. https://ethereum.org/en/
developers/docs/data- structures-and-encoding/patricia-merkle-trie/. Accessed:
2023-10-20.

[3] inBlocks team. 2023. inBlocks Web Site. https://inblocks.io/. Accessed: 2023-10-18.

[4] Lorne Lantz and Daniel Cawrey. 2020. Mastering Blockchain: Unlocking the Power
of Cryptocurrencies, Smart Contracts, and Decentralized Applications. O’Reilly
Media, Inc.

[5] Debasis Mohanty, Divya Anand, Hani Moaiteq Aljahdali, and Santos Gracia Vil-
lar. 2022. Blockchain Interoperability: Towards a Sustainable Payment System.
Sustainability 14, 2 (2022). https://doi.org/10.3390/su14020913

[6] Donald R. Morrison. 1968. PATRICIA—Practical Algorithm To Retrieve Informa-
tion Coded in Alphanumeric. Journal of the ACM (JACM) 15 (1968), 514 — 534.
https://api.semanticscholar.org/CorpusID:3335450

[7] Pierre-Alain Ouvrard. 2019. Merkle proof verification for Ethereum Patricia
tree. https://ouvrard-pierre-alain.medium.com/merkle-proof-verification-for-
ethereum-patricia-tree-48f29658eec. Accessed: 2023-10-20.

[8] Melanie Swan. 2015. Blockchain. O’Reilly Media, Inc.

[9] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151 (2014), 1-32.

https://github.com/inblocks/precedence
https://ethereum.org/
https://github.com/ethereumjs/merkle-patricia-tree
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://inblocks.io/
https://doi.org/10.3390/su14020913
https://api.semanticscholar.org/CorpusID:3335450
https://ouvrard-pierre-alain.medium.com/merkle-proof-verification-for-ethereum-patricia-tree-48f29658eec
https://ouvrard-pierre-alain.medium.com/merkle-proof-verification-for-ethereum-patricia-tree-48f29658eec

	Abstract
	1 Introduction
	2 Trees, prefix trees and Patricia trees
	2.1 Definitions
	2.2 Operations on a Tree
	2.3 Prefix Trees and Patricia Trees

	3 Merkle Trees ans Merkle Patricia Trees
	3.1 Merkle Tree
	3.2 Merkle Patricia Tree

	4 Proof of membership
	4.1 Proof of membership in a Merkle Tree
	4.2 Proof of membership in a Merkle Patricia Tree

	5 Precedence: a proof of safety
	5.1 Architecture of Precedence
	5.2 Specific implementation information
	5.3 Proof of safety

	6 Conclusion
	References

